Recursive ℓ1, ∞ Group Lasso

نویسندگان

  • Yilun Chen
  • Alfred O. Hero
چکیده

We introduce a recursive adaptive group lasso algorithm for real-time penalized least squares prediction that produces a time sequence of optimal sparse predictor coefficient vectors. At each time index the proposed algorithm computes an exact update of the optimal `1,∞-penalized recursive least squares (RLS) predictor. Each update minimizes a convex but nondifferentiable function optimization problem. We develop an online homotopy method to reduce the computational complexity. Numerical simulations demonstrate that the proposed algorithm outperforms the `1 regularized RLS algorithm for a group sparse system identification problem and has lower implementation complexity than direct group lasso solvers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate Descent Algorithms for Lasso Penalized Regression

Imposition of a lasso penalty shrinks parameter estimates toward zero and performs continuous model selection. Lasso penalized regression is capable of handling linear regression problems where the number of predictors far exceeds the number of cases. This paper tests two exceptionally fast algorithms for estimating regression coefficients with a lasso penalty. The previously known ℓ2 algorithm...

متن کامل

Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including ...

متن کامل

A Generic Path Algorithm for Regularized Statistical Estimation.

Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution towards prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints...

متن کامل

Online Sparse System Identification and Signal Reconstruction using Projections onto Weighted ℓ1 Balls

This paper presents a novel projection-based adaptive algorithm for sparse signal and system identification. The sequentially observed data are used to generate an equivalent sequence of closed convex sets, namely hyperslabs. Each hyperslab is the geometric equivalent of a cost criterion, that quantifies “data mismatch”. Sparsity is imposed by the introduction of appropriately designed weighted...

متن کامل

An ADMM algorithm for solving ℓ1 regularized MPC

[1] M. Gallieri, J. M. Maciejowski “lasso MPC: Smart Regulation of OverActuated Systems”, to appear in ACC 2012. [2] M. Annergren, A. Hansson, B. Wahlberg “An ADMM Algorithm for Solving l1 Regularized MPC”, submitted. [3] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers”, Foundations and Tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2012